Один из катетов прямоугольного треугольника равен 15 см, а проекция другого катета на гипотенузу равна 16 см. найти радиус окружности, вписанной в треугольник.

первый катет — x, его проекция 16;

второй — 15, a его проекция — y;

{x^2=16(16+y)

{15^2+x^2=(16+y)^2

 

15^2+16(16+y)=(16+y)^2;

  t=16+y; y=t-16

 t^2-16t-225=0;

D=34^2;

t=(16+-34)/2=8+-17=-9; 25

y=-25; 9; y<0 не подходят

x=x=\sqrt{16(16+9)}=4\cdot5=20

r=S/p

r=1/2*15*20/(1/2*(15+20+25))=15*20/(3*20)=5

Ответ: 5 

Оцени ответ
Не нашёл ответ?

Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Геометрия.

Найти другие ответы

Загрузить картинку
© Умницы.ru