Бросили шесть монет. Какова вероятность, что число выпавших гербов,будет больше числа решек? Ответ до сотых

Всего исходов: 2*2*2*2*2*2=64. То есть:

Всего благоприятствующих исходов выпишем в виде таблицы
\{\Gamma,\Gamma,\Gamma,\Gamma,\Gamma,\Gamma\}\\ \{\Gamma,P,\Gamma,\Gamma,\Gamma,\Gamma\}\\ \{\Gamma,\Gamma,P,\Gamma,\Gamma,\Gamma\}\\ \{\Gamma,\Gamma,\Gamma,P,\Gamma,\Gamma\}\\ \{\Gamma,\Gamma,\Gamma,\Gamma,P,\Gamma\}\\ \{\Gamma,\Gamma,\Gamma,\Gamma,\Gamma,P\}\\\{P,\Gamma,\Gamma,\Gamma,\Gamma,\Gamma\}\\ \{\Gamma,P,P,\Gamma,\Gamma,\Gamma\}\\ \{P,\Gamma,P,\Gamma,\Gamma,\Gamma\}\\ \{P,\Gamma,\Gamma,P,\Gamma,\Gamma\}\\ \{P,\Gamma,\Gamma,\Gamma,P,\Gamma\}\\ \{P,\Gamma,\Gamma,\Gamma,\Gamma,P\}
\{P,P,\Gamma,\Gamma,\Gamma,\Gamma\}
\{\Gamma,P,\Gamma,P,\Gamma,\Gamma\}\\ \{\Gamma,P,\Gamma,\Gamma,P,\Gamma\}\\ \{\Gamma,P,\Gamma,\Gamma,\Gamma,P\}
\{\Gamma,\Gamma,P,P,\Gamma,\Gamma\}\\ \{\Gamma,\Gamma,P,\Gamma,P,\Gamma\}\\ \{\Gamma,\Gamma,P,\Gamma,\Gamma,P\}
\{\Gamma,\Gamma,\Gamma,P,P,\Gamma\}\\ \{\Gamma,\Gamma,\Gamma,P,\Gamma,P\}
\{\Gamma,\Gamma,\Gamma,\Gamma,P,P\}

Всего благоприятствующих — 22

Искомая вероятность: P = 22/64? 0.34

Оцени ответ

Попробуем дать более простое решение 

всего комбинаций

2^6=64

нам подойдут случаи выпадения гербов 4,5,6
найдем количество таких способов

C_6^4+C_6^5+C_6^6= \frac{6!}{4!2!}+ \frac{6!}{5!1!}+1=15+6+1= 22

Значит вероятность

P= \frac{22}{64}= 0.34375

Ответ  0,34

Оцени ответ
Не нашёл ответ?

Если тебя не устраивает ответ или его нет, то попробуй воспользоваться поиском на сайте и найти похожие ответы по предмету Алгебра.

Найти другие ответы

Загрузить картинку
© Умницы.ru